Glytactin BUILD™ 20/20 Powder 20 gram Protein Equivalent
(modified glycomacropeptide)

PRODUCT INFORMATION
Glytactin BUILD 20/20 Powder 20 gram Protein Equivalent (modified glycomacropeptide)
1.2 oz (32 g) packet Reimbursement Code: 24359-0531-01 (USA only)
Manufactured by Cambrooke Therapeutics, Inc. Ayer, MA 01432 www.cambrooke.com

DISPENSE BY PRESCRIPTION
Glytactin BUILD 20/20 (modified glycomacropeptide) is a medical food for the dietary management of phenylketonuria (PKU).

DESCRIPTION
Glytactin BUILD 20/20 (modified glycomacropeptide) is a specially formulated prescription medical food for the clinical dietary management of phenylalanine hydroxylase deficiency (phenylketonuria) and hyperphenylalaninemia.

Glytactin BUILD 20/20 is to be used only under medical supervision. Glytactin BUILD 20/20 has been developed, labeled and should be administered in accordance with the FDA statutory and regulatory definition of Medical Foods.

Congress defines “Medical Food” in the Orphan Drug Act and Amendments of 1988 as a formulation to be administered enterally (for oral or tube feeding) under the supervision of a physician and which is intended for the specific dietary management of a disease or condition for which distinctive nutritional requirements, based on recognized scientific principles are established by medical evaluation 21 U.S.C. 360ee(b)(3).

Glytactin BUILD 20/20 is supplied in single dose, 1.2 oz (32 g) packets, thirty packets per case. Each packet contains 20 grams of protein equivalent and provides a complete macro and micronutrient profile and probiotics.

PRIMARY INGREDIENTS

Glycomacropeptide
Glycomacropeptide (GMP) is a 64-amino acid whole protein derived from whey. GMP has a unique amino acid profile, which includes an absence of the aromatic amino acids, phenylalanine, tryptophan and tyrosine and higher concentrations of isoleucine and threonine, compared to other dietary proteins.1 The naturally low levels of phenylalanine contained in commercial GMP make this protein an alternative to synthetic free amino acid based protein for the management of PKU.

The GMP in Glytactin BUILD 20/20 is modified by enhancing levels of tryptophan, arginine, leucine, histidine, and tyrosine which are naturally deficient in pure GMP. The addition of these amino acids is necessary to meet daily required intake of these essential and indispensable amino acids, which cannot be synthesized by the body.

GMP in its pure form contains no phenylalanine. The process of extracting and refining glycomacropeptide results in the inclusion of trace quantities of phenylalanine (1 mg of phenylalanine per gram protein equivalent).

Large Neutral Amino Acids
GMP is naturally high in the large neutral amino acids threonine, isoleucine, and valine. Glytactin BUILD 20/20 is further supplemented with additional large neutral amino acids including: histidine, leucine, tryptophan and tyrosine. Phenylalanine is the offending amino acid in phenylalanine hydroxylase deficiency and intake must be severely restricted to prevent neurodevelopmental and physiological consequences. The LNAA profile of Glytactin BUILD 20/20 may inhibit the transport of ingested phenylalanine across the intestinal lumen and blood brain barrier.2,3,4

Micronutrients and Macronutrients
Patients with phenylalanine hydroxylase deficiency have a severely restricted diet to minimize intake of phenylalanine found naturally in all foods containing protein including all meats, legumes, and many vegetables, fruits and grains. As such, there is meaningful risk and challenges in receiving recommended daily intake of many micronutrients. Glytactin BUILD 20/20 provides a complete macro and micronutrient profile. However, additional supplementation may be needed for some individuals and should be discussed with your physician.

Complete Ingredients
Glycomacropeptide (GMP), vitamin and mineral blend (calcium lactate, choline bitartrate, potassium phosphate, magnesium phosphate, ascorbic acid, vitamin E [dl-alpha-tocopheryl acetate], iron [ferrous fumarate], niacinamide, zinc sulfate, calcium d-pantothenate, manganese sulfate, vitamin B1 [thiamin mononitrate], vitamin B2 [riboflavin], vitamin B6 [pyridoxine HCl], copper gluconate, folic acid, vitamin A[palmate], potassium iodide, sodium selenite, vitamin K1 [phylloquinone], vitamin K2 [menaquinone-7], sodium molybdate, chromium chloride, vitamin D3 [cholecalciferol], biotin, vitamin B12 [cyanocobalamin], potassium chloride), L-leucine, L-arginine, L-tyrosine, sunflower oil, maltodextrin, L-lysine acetate, L-histidine, L-tryptophan, and B. coagulans GBI-30 6086. Contains milk.
The ingredients in Glytactin BUILD 20/20 are Generally Recognized As Safe (GRAS). This is the statutory safety standard of the U.S. Food and Drug Administration (FDA). The standard for an ingredient to achieve GRAS status requires technical demonstration of non-toxicity and safety, general recognition of safety through widespread usage and agreement by experts in the field.

MEDICAL FOOD STATUS

INDICATIONS FOR USE

Glytactin BUILD 20/20 is a medical food for the dietary management of individuals under a physician’s care for phenylalanine hydroxylase deficiency (phenylketonuria) or hyperphenylalaninemia.

CLINICAL EXPERIENCE

Published in the American Journal of Clinical Nutrition in July 2016, an outpatient randomized crossover trial was led by the University of Wisconsin’s Department of Nutritional Science to test the safety and efficacy of a diet using traditional amino acid medical foods versus glycomacropeptide (GMP) based medical foods as part of the dietary management of PKU. Thirty early-treated PKU subjects completed the study at The Waisman Center, Madison, WI and Boston Children’s Hospital, Boston, MA. Cambrooke Therapeutics Glytactin medical food products were solely used in the GMP medical food arm of the study.

Following a three-week wash out period where amino acid-based medical foods were used, each subject completed three weeks of a low phenylalanine (Phe) diet treatment using amino acid medical foods as their primary source of protein equivalent and three weeks using GMP medical foods as their primary source of protein equivalent. The same daily-prescribed protein equivalents were used throughout the study. Subjects were counseled and monitored for their nutrient intake from supplemental standard food products.

Serum chemistry profiles were analyzed routinely to monitor phenylalanine and tyrosine levels and the change in plasma Phe concentrations in subjects following the use of amino acid–based metabolic formula and compared to plasma Phe concentrations of the same patients following the consumption of GMP medical foods. Neuropsychological, behavioral, and intelligence testing was done on each subject to assess executive function. Following the study, researchers concluded that there was no significant increase in plasma Phe in spite of the fact that the GMP medical foods contains low levels of Phe. They also noted that the patients had fewer side effects of gastrointestinal distress. Behavior ratings and executive function results were not significantly different following consumption of either forms of protein. Patients felt less hunger during the day on a GMP-based protein diet and found the medical foods products, in general, more acceptable. In conclusion, the GMP medical foods products were found to be a safe and acceptable option for the nutritional management of PKU.

Inpatient clinical studies completed at the University of Wisconsin with eleven phenylketonuria patients were conducted to investigate the safety and acceptability of substituting protein from glycomacropeptide for synthetic amino acid formula. Subjects consumed their usual amino acid based formula for four days followed by a glycomacropeptide formula sparingly supplemented with essential amino acids for four days. The same daily-prescribed protein equivalents were used throughout the study. Subjects were counseled and monitored for their nutrient intake from supplemental standard food products.

Following a three-week wash out period where amino acid-based medical foods were used, each subject completed three weeks of a low phenylalanine (Phe) diet treatment using amino acid medical foods as their primary source of protein equivalent and three weeks using GMP medical foods as their primary source of protein equivalent. The intake of Phe while on an amino acid medical foods but was higher when on the GMP medical foods (P=0.0259) because of the natural Phe contained in the GMP. The intake of Phe from natural diet sources was not significantly different for either protein treatment.

Following the study, researchers concluded that there was no significant increase in plasma Phe in spite of the fact that the GMP medical foods contains low levels of Phe. They also noted that the patients had fewer side effects of gastrointestinal distress. Behavior ratings and executive function results were not significantly different following consumption of either forms of protein. Patients felt less hunger during the day on a GMP-based protein diet and found the medical foods products, in general, more acceptable. In conclusion, the GMP medical foods products were found to be a safe and acceptable option for the nutritional management of PKU.

Figure 4B from page 8: This figure illustrates the total Phe intake and compares the Phe intake while on the amino acid based protein medical foods to the Phe intake while on the GMP medical foods. Phe intake did not increase significantly when on an amino acid medical foods but was higher when on the GMP medical foods (P=0.0259) because of the natural Phe contained in the GMP. The intake of Phe from natural diet sources was not significantly different for either protein treatment.

Figure 6 A from page 9: This figure shows fasting blood Phe levels done based on analysis of dried blood spots of subjects, analyzed with tandem mass spectrometry. No significant differences are seen in blood Phe levels due to treatment with an amino acid protein diet versus a GMP protein diet, even though the diet contained higher levels of natural phenylalanine.

This figure shows that the concentration of total amino acids in plasma was significantly greater, and the concentration of BUN was significantly lower, with Glycomacropeptide compared with the synthetic amino acid diet when measured 2.5 hours after consumption. This result is consistent with slower absorption of amino acids from an intact natural source of protein. It also suggests that fewer amino acids are degraded for urea production and instead are retained for protein synthesis when glycomacropeptide is substituted for synthetic amino acids as a protein source.
Glytactin BUILD 20/20 contains protein from whey. Therefore, it may not be suitable for those with an allergy to mood regulation, alertness, dopamine transmission, learning and memory. Individuals with other inborn errors of protein metabolism or those without a phenylketonuria diagnosis can experience complications if using this product due to its extremely low level of phenylalanine which contributes to bone mineral density and higher incidence of fractures in patients with phenylketonuria compared to control subjects without the disorder. Studies have shown a range in 30-50% of patients with phenylketonuria have reduced bone mineral density (BMD). A 2018 cross sectional study reported up to 50% of males with PKU may have lower bone mineral density due to their increased protein needs and higher intake of amino acid medical foods. Mouse studies compared mice with phenylketonuria fed low-phenylalanine synthetic amino acid diets with phenylketonuria mice that were fed low-phenylalanine diets based on glycomacropeptide sparingly supplemented with limited essential amino acids. Reductions in both femoral size and tolerance before maximum load tolerated before fracture were observed in mice fed the low-phenylalanine synthetic amino acid diet compared with the glycomacropeptide diet. In humans, Glytactin medical foods reduced urinary loss of calcium by 40% and magnesium by 30% allowing them to be available for bone synthesis. This suggests that providing dietary protein from glycomacropeptide rather than synthetic amino acids lessoned the phenylketonuric bone phenotype of skeletal fragility that is common to phenylketonuria patients.

The traditional 100% synthetically derived amino acid diet for phenylketonuria has a high dietary acid load that may not just affect the skeletal system. It is suspected to carry an additional metabolic burden to the body. adverse effects of synthetically derived amino acid diets in mice studies include metabolic stress as reflected in increased energy expenditure and intake of food and water, increased renal and spleen mass, and elevated plasma cytokine concentrations consistent with systemic inflammation. The glycomacropeptide diet significantly reduced these adverse effects in mice. Total fat mass, % body fat, and the respiratory exchange ratio (CO2 produced/O2 consumed) were significantly lower in PKU mice fed glycomacropeptide compared with synthetic amino acid diets.

PHARMACOKINETICS

Glytactin (modified glycomacropeptide) contains glycomacropeptide as a primary ingredient. The low level of aromatic amino acids (phenylalanine, tryptophan and tyrosine) and concentration of large neutral amino acids (LNAA)s threonine, valine and isoleucine make glycomacropeptide an ideal protein replacement therapy for phenylketonuria patients. The naturally high concentration of LNAA$s in glycomacropeptide are enhanced with supplemental LNAA$s to compete with the offending amino acid phenylalanine for specific carrier proteins that transport LNAA$s across the intestinal mucosa and blood-brain barrier. This increased competition likely restricts the ability of phenylalanine to enter the brain where it can become a neurotoxin leading to mental impairment for the patient with phenylketonuria.

As primarily whole protein, Glytactin (modified glycomacropeptide) is digested more slowly than synthetic amino acids, allowing the passage from the stomach through the intestinal wall and into the bloodstream. This normal digestion process allows the body to efficiently break down and synthesize the protein.

Precautions and Contraindications

Glytactin BUILD 20/20 is intended for the dietary management of individuals with a diagnosis of phenylketonuria. Individuals with other inborn errors of protein metabolism or those without a phenylketonuria diagnosis can experience complications if using this product due to its extremely low level of phenylalanine which contributes to mood regulation, alertness, dopamine transmission, learning and memory. Glytactin BUILD 20/20 contains protein from whey. Therefore, it may not be suitable for those with an allergy to milk or milk products.

Glytactin BUILD 20/20 contains a small amount of phenylalanine (1 mg of phenylalanine per protein equivalent gram) due to the process of extracting and refining glycomacropeptide; recent studies indicate the daily Phe prescription from natural food does not need to be modified to accommodate the natural Phe inherent to Glytactin.

Glytactin BUILD 20/20 is not intended as a complete meal replacement and should be consumed with other nutrients as prescribed by a physician or dietitian to meet general nutrient requirements.

Adverse Reactions

Post – marketing surveillance has shown no adverse reactions.

Drug Interactions

None known.
BUILD 20/20 provides 20g Protein Equivalent per 1.2 oz (32 g) packet. The packets are packaged 30 per case.

DOSAGE AND ADMINISTRATION

Glytactin BUILD 20/20 is a medical food to be re-hydrated with water or liquid and administered enterally by mouth or feeding tube, under the supervision of a physician. Recommended daily requirements vary with age, weight and activity levels. Follow the recommendations of the medical practitioner to determine the best amount of Glytactin BUILD 20/20 to be used each day. Glytactin BUILD 20/20 can be used as a stand alone PKU formula or can be added to any beverage, PKU formula, or any low protein food.

HOW SUPPLIED

BUILD 20/20 provides 20g Protein Equivalent per 1.2 oz (32 g) packet. The packets are packaged 30 per case (reimbursement code: 24359-0531-01, USA only). Keep sealed in a cool, dry place.

REFERENCES

17. Stroup BM, Swain EA, Murali SG, Binkley N, Hansen KE, Ney DM. Amino acid medical foods provide a high dietary acid load and increase urinary excretion of renal net acid, calcium, and magnesium concentration compared with Glycomacropeptide medical foods in phenylketonuria. J Nutr Metab. 2017; May;1901901.